000 07649nam a2201189 i 4500
001 5769528
003 IEEE
005 20230927112352.0
006 m o d
007 cr |n|||||||||
008 151221s2004 njua ob 001 eng d
020 _a9780471679370
_qelectronic
020 _z9780471469605
_qprint
020 _z0471679372
_qelectronic
024 7 _a10.1002/9780471679370
_2doi
035 _a(CaBNVSL)mat05769528
035 _a(IDAMS)0b000064815400e9
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
100 1 _aMarmarelis, Vasilis Z.,
_eauthor.
245 1 0 _aNonlinear dynamic modeling of physiological systems /
_cVasilis Z. Marmarelis.
264 1 _aHoboken, New Jersey :
_bWiley-Interscience,
_cc2004
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2004]
300 _a1 PDF (xvi, 541 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press series on biomedical engineering ;
_v10
504 _aIncludes bibliographical references.
505 0 _aPrologue -- 1 Introduction -- 1.1 Purpose of this Book -- 1.2 Advocated Approach -- 1.3 The Problem of System Modeling in Physiology -- 1.4 Types of Nonlinear Models of Physiological Systems -- 2 Nonparametric Modeling -- 2.1 Volterra Models -- 2.2 Wiener Models -- 2.3 Efficient Volterra Kernel Estimation -- 2.4 Analysis of Estimation Errors -- 3 Parametric Modeling -- 3.1 Basic Parametric Model Forms and Estimation Procedures -- 3.2 Volterra Kernels of Nonlinear Differential Equations -- 3.3 Discrete-Time Volterra Kernels of NARMAX Models -- 3.4 From Volterra Kernel Measurements to Parametric Models -- 3.5 Equivalence Between Continuous and Discrete Parametric Models -- 4 Modular and Connectionist Modeling -- 4.1 Modular Form of Nonparametric Models -- 4.2 Connectionist Models -- 4.3 The Laguerre-Volterra Network -- 4.4 The VWM Model -- 5 A Practitioner's Guide -- 5.1 Practical Considerations and Experimental Requirements -- 5.2 Preliminary Tests and Data Preparation -- 5.3 Model Specification and Estimation -- 5.4 Model Validation and Interpretation -- 5.5 Outline of Step-by-Step Procedure -- 6 Selected Applications -- 6.1 Neurosensory Systems -- 6.2 Cardiovascular System -- 6.3 Renal System -- 6.4 Metabolic-Endocrine System -- 7 Modeling of Multiinput/Multioutput Systems -- 7.1 The Two-Input Case -- 7.2 Applications of Two-Input Modeling to Physiological Systems -- 7.3 The Multiinput Case -- 7.4 Spatiotemporal and Spectrotemporal Modeling -- 8 Modeling of Neuronal Systems -- 8.1 A General Model of Membrane and Synaptic Dynamics -- 8.2 Functional Integration in the Single Neuron -- 8.3 Neuronal Systems with Point-Process Inputs -- 8.4 Modeling of Neuronal Ensembles -- 9 Modeling of Nonstationary Systems -- 9.1 Quasistationary and Recursive Tracking Methods -- 9.2 Kernel Expansion Method -- 9.3 Network-Based Methods -- 9.4 Applications to Nonstationary Physiological Systems -- 10 Modeling of Closed-Loop Systems -- 10.1 Autoregressive Form of Closed-Loop Model -- 10.2 Network Model Form of Closed-Loop Systems.
505 8 _aAppendix I: Function Expansions -- Appendix II: Gaussian White Noise -- Appendix III: Construction of the Wiener Series -- Appendix IV: Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes -- References -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aA practical approach to obtaining nonlinear dynamic models from stimulus-response dataNonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems.Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives illustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches-nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist-and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aPhysiology
_xMathematical models.
650 0 _aNonlinear theories.
655 0 _aElectronic books.
695 _aAccuracy
695 _aAdaptation models
695 _aAnisotropic magnetoresistance
695 _aApproximation error
695 _aApproximation methods
695 _aAutoregressive processes
695 _aBandwidth
695 _aBibliographies
695 _aBiomembranes
695 _aBroadband communication
695 _aComplexity theory
695 _aComputational modeling
695 _aContext
695 _aContext modeling
695 _aCorrelation
695 _aData models
695 _aDifference equations
695 _aDynamic range
695 _aEigenvalues and eigenfunctions
695 _aElectric potential
695 _aEquations
695 _aEstimation
695 _aFilter banks
695 _aFiring
695 _aFourier transforms
695 _aGain
695 _aGaussian processes
695 _aGenetic expression
695 _aHilbert space
695 _aIndexes
695 _aJoints
695 _aKernel
695 _aLinear regression
695 _aLinearity
695 _aMathematical model
695 _aMinimization
695 _aModeling
695 _aNerve fibers
695 _aNeurons
695 _aNoise
695 _aNonlinear dynamical systems
695 _aNonlinear systems
695 _aParametric statistics
695 _aPhysiology
695 _aPolynomials
695 _aPredictive models
695 _aProbabilistic logic
695 _aRadiation detectors
695 _aRandom processes
695 _aRetina
695 _aSections
695 _aTaylor series
695 _aTime varying systems
695 _aTraining
695 _aWhite noise
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aIEEE Engineering in Medicine and Biology Society.
730 0 _aIEEE Xplore (Livres)
776 0 8 _iPrint version:
_z9780471469605
830 0 _aIEEE Press series in biomedical engineering ;
_v10
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5769528
999 _c40401
_d40401