000 | 01953n a2200301#a 4500 | ||
---|---|---|---|
001 | 40126 | ||
003 | P5A | ||
005 | 20230123132002.0 | ||
007 | cr cuuuuuauuuu | ||
008 | 210830s2021 bl por d | ||
035 | _aocm51338542 | ||
040 |
_aP5A _cP5A |
||
090 | _atimpa | ||
100 | 1 |
_aSpier, Thomas Jung _99386 |
|
245 | 1 | 0 |
_aGraph Continued Fractions/ _cThomás Jung Spier. |
246 | 1 | _aFrações Contínuas de Grafos | |
260 |
_aRio de Janeiro: _bIMPA, _c2021. |
||
300 | _avideo online | ||
500 | _aDefesa de Tese. | ||
500 | _aBanca examinadora: Carlos Gustavo Moreira - Orientador - IMPA Dimitar Dimitrov - Coorientador - UNESP Rob Morris - IMPA Nicolau Saldanha - PUC-Rio Gabriel Coutinho - UFMG Eduardo Tengan - UFSC | ||
505 | 1 | _aAbstract: This thesis studies a connection between matching polynomials and continued fractions. For the matching polynomials: we prove a refinement of a theorem by Ku and Wong, which extends the classical Gallai-Edmonds decomposition; we present a generalization of Sturm's classical theorem about the number of zeros of a real polynomial in an interval; we characterize the number of distinct zeros in terms of the dimension of a vector space generated by a family of matching polynomials; we prove an upper bound on the number of paths that start at some vertex of a graph. We also present simple formulas for means of continued fractions that are useful in the classical theory of the Pell equation . | |
650 | 0 | 4 |
_aMatematica. _2larpcal _919899 |
697 |
_aTeses do IMPA _924311 |
||
700 | 1 |
_aMoreira, Carlos Gustavo T. de A. _u(IMPA) _eorientador _912783 |
|
711 | 2 |
_aDefesa de Tese _910070 |
|
856 | 4 |
_zVIDEO _uhttps://bit.ly/3kvMNhC |
|
942 |
_2impa _cVIDEO |
||
999 |
_aGRAPH Continued Fractions. Thomás Jung Spier. Rio de Janeiro: IMPA, 2021. video online. Disponível em: https://bit.ly/3kvMNhC. Acesso em: 30 ago. 2021. _c38767 _d38767 |