000 01953n a2200301#a 4500
001 40126
003 P5A
005 20230123132002.0
007 cr cuuuuuauuuu
008 210830s2021 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _atimpa
100 1 _aSpier, Thomas Jung
_99386
245 1 0 _aGraph Continued Fractions/
_cThomás Jung Spier.
246 1 _aFrações Contínuas de Grafos
260 _aRio de Janeiro:
_bIMPA,
_c2021.
300 _avideo online
500 _aDefesa de Tese.
500 _aBanca examinadora: Carlos Gustavo Moreira - Orientador - IMPA Dimitar Dimitrov - Coorientador - UNESP Rob Morris - IMPA Nicolau Saldanha - PUC-Rio Gabriel Coutinho - UFMG Eduardo Tengan - UFSC
505 1 _aAbstract: This thesis studies a connection between matching polynomials and continued fractions. For the matching polynomials: we prove a refinement of a theorem by Ku and Wong, which extends the classical Gallai-Edmonds decomposition; we present a generalization of Sturm's classical theorem about the number of zeros of a real polynomial in an interval; we characterize the number of distinct zeros in terms of the dimension of a vector space generated by a family of matching polynomials; we prove an upper bound on the number of paths that start at some vertex of a graph. We also present simple formulas for means of continued fractions that are useful in the classical theory of the Pell equation .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aTeses do IMPA
_924311
700 1 _aMoreira, Carlos Gustavo T. de A.
_u(IMPA)
_eorientador
_912783
711 2 _aDefesa de Tese
_910070
856 4 _zVIDEO
_uhttps://bit.ly/3kvMNhC
942 _2impa
_cVIDEO
999 _aGRAPH Continued Fractions. Thomás Jung Spier. Rio de Janeiro: IMPA, 2021. video online. Disponível em: https://bit.ly/3kvMNhC. Acesso em: 30 ago. 2021.
_c38767
_d38767