000 02930n a2200409#a 4500
001 5000223
003 DE-He213
005 20221213140640.0
007 cr||||||||||||
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540773993
024 7 _a10.1007/978-3-540-77399-3
_2doi
035 _a978-3-540-77399-3
072 7 _aPBF
_2bicssc
072 7 _aMAT002010
_2bisacsh
082 0 4 _a512.44
090 _amg
100 1 _aStekolshchik, Rafael
_99361
245 1 0 _aNotes on Coxeter Transformations and the McKay Correspondence
_h[electronic resource]/
_cby Rafael Stekolshchik.
260 _aBerlin, Heidelberg:
_bSpringer Berlin Heidelberg,
_c2008.
300 _bdigital.
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _aIntroduction -- Preliminaries -- The Jordan normal form of the Coxeter transformation -- Eigenvalues, splitting formulas and diagrams Tp,q r -- R. Steinberg's theorem, B. Kostant's construction. - The affine Coxeter transformation -- A. The McKay correspondence and the Slodowy correspondence -- B. Regularity conditions for representations of quivers -- C. Miscellanea -- References -- Index .
520 _aOne of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new .
650 0 _aMathematics
_943458
650 0 _aAlgebra
_943450
650 0 _aGroup theory
_943436
650 0 _aTopological groups.
_943823
697 _aMatemáticas Gerais-
_x(inclusive alguns textos elementares sobre assuntos específicos)
_923752
710 1 _aSpringerLink (Online service).
_98857
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540773986
830 0 _aSpringer monographs in mathematics,
_924417
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-77399-3
942 _2impa
_cEBK
999 _aSTEKOLSHCHIK, Rafael. <b> Notes on Coxeter Transformations and the McKay Correspondence. </b> Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. (Springer Monographs in Mathematics, 1439-7382). ISBN 9783540773993. Disponível em: <http://dx.doi.org/10.1007/978-3-540-77399-3 >
_c38590
_d38590