000 03883n a2200445#a 4500
001 5000169
003 DE-He213
005 20221213140639.0
007 cr||||||||||||
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540683490
024 7 _a10.1007/978-3-540-68349-0
_2doi
035 _a978-3-540-68349-0
072 7 _aPBKF
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aMAT037000
_2bisacsh
082 0 4 _a515.5
090 _amg
100 1 _aMastroianni, Giuseppe
_99226
245 1 0 _aInterpolation Processes
_h[electronic resource]:
_bBasic Theory and Applications/
_cby Giuseppe Mastroianni, Gradimir V. Milovanovic.
260 _aBerlin, Heidelberg:
_bSpringer Berlin Heidelberg,
_c2008.
300 _aXIV, 444 p.
_bdigital.
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _a1. Constructive Elements and Approaches in Approximation Theory -- 1.1 Introduction to Approximation Theory -- 1.2 Basic Facts on Trigonometric Approximation -- 1.3 Chebyshev Systems and Interpolation -- 1.4 Interpolation by Algebraic Polynomials -- 2. Orthogonal Polynomials and Weighted Polynomial Approximation -- 2.1 Orthogonal Systems and Polynomials -- 2.2 Orthogonal Polynomials on the Real Line -- 2.3 Classical Orthogonal Polynomials -- 2.4 Nonclassical Orthogonal Polynomials -- 2.5 Weighted Polynomial Approximation -- 3. Trigonometric Approximation -- 3.1 Approximating Properties of Operators -- 3.2 Discrete Operators -- 4. Algebraic Interpolation in Uniform Norm -- 4.1 Introduction and Preliminaries -- 4.2 Optimal Systems of Nodes -- 4.3 Weighted Interpolation -- 5. Applications -- 5.1 Quadrature Formulae -- 5.2 Integral Equations -- 5.3 Moment-Preserving Approximation -- 5.4 Summation of Slowly Convergent Series -- References -- Index .
520 _aThe classical books on interpolation address numerous negative results, i.e., results on divergent interpolation processes, usually constructed over some equidistant systems of nodes. The authors present, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. In this special, but fundamental and important field of real analysis the authors present the state of art. Some 500 references are cited, including many new results of the authors. Basic tools in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.) as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. Beside the basic properties of the classical orthogonal polynomials the book provides new results on nonclassical orthogonal polynomials including methods for their numerical construction .
650 0 _aMathematics
_943458
650 0 _aFourier analysis
_937926
650 0 _aIntegral equations.
_943725
650 0 _aSequences (Mathematics)
_937180
650 0 _aFunctions, Special.
_937966
697 _aMatemáticas Gerais-
_x(inclusive alguns textos elementares sobre assuntos específicos)
_923752
700 1 _aMilovanovic, Gradimir V
_99227
710 1 _aSpringerLink (Online service).
_98857
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540683469
830 0 _aSpringer monographs in mathematics,
_924417
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-68349-0
942 _2impa
_cEBK
999 _aMASTROIANNI, Giuseppe; MILOVANOVIC, Gradimir V. <b> Interpolation Processes: </b> Basic Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. XIV, 444 p (Springer Monographs in Mathematics, 1439-7382). ISBN 9783540683490. Disponível em: <http://dx.doi.org/10.1007/978-3-540-68349-0 >
_c38562
_d38562