000 02875n a2200349#a 4500
001 39797
003 P5A
005 20221213140634.0
007 cr cuuuuuauuuu
008 200908s2020 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _atimpa
100 1 _aAgüero, Dan
_9685
245 1 0 _aComplex Dirac structures with constant real index/
_cDan Agüero.
246 1 1 _aEstruturas de Dirac complexas com índice real constante.
260 _aRio de Janeiro:
_bIMPA,
_c2020.
300 _avideo online
500 _aBanca examinadora: Henrique Bursztyn - Orientador - IMPA Roberto Rubio - Coorientador - Univ. Autonoma de Barcelona Reimundo Heluani - IMPA Cristian Ortiz - USP Alejandro Cabrera - UFRJ Thiago Linhares - Suplente - UFRJ.
505 1 _aAbstract: This thesis studies complex Dirac structures (i.e., Dirac structures in the complexification of the generalized tangent bundle of a manifold) with constant real index. These objects extend generalized complex structures, which arise when the real index is zero, and encode geometric structures such as presymplectic, transverse holomorphic and CR structures. We introduce a new invariant that we call order, which is an nonnegative integer that allows us to obtain a classification of complex Dirac structures at the linear-algebraic level. We prove that complex Dirac structures with constant real index and order carry a presymplectic foliation which comes from an underlying (real) Dirac structure (generalizing the Poisson structures associated with generalized complex structures). We prove a local splitting theorem for complex Dirac structures with constant real index and order which extends the Abouzaid-Boyarchenko's splitting theorem for generalized complex structures. Finally we focus on complex Dirac structures with real index one; we study a pairing , analogous to the Chevalley-Mukai pairing, which gives information about the dimension of the intersection of the annihilators of two pure spinors. We use it to give a spinorial description of complex Dirac structure with real index one .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aTeses do IMPA
_924311
700 1 _aBursztyn, Henrique.
_u(IMPA, Brazil)
_eorientador
_92937
700 1 _aRubio, Roberto
_u(Universidade Autonoma de Barcelona, Espanha)
_eco-orientador
_98531
700 1 _aHeluani, Reimundo.
_u(IMPA, Brazil)
_94335
700 1 _aOrtiz, Cristian
_u(USP, Brazil)
_9361
700 1 _aCabrera, Alejandro
_u(UFRJ, Brazil)
_96487
700 1 _aLinhares, Thiago
_u(UFRJ, Brazil)
_9686
711 2 _aDefesa de Tese
_910070
856 4 _zVIDEO
_uhttps://youtu.be/zge-0o6y5xE
942 _2ddc
_cBK
999 _aCOMPLEX Dirac structures with constant real index. Dan Agüero. Rio de Janeiro: IMPA, 2020. video online. Disponível em: <https://youtu.be/zge-0o6y5xE>. Acesso em: 12 ago. 2020.
_c38305
_d38305