000 01972n a2200289#a 4500
001 38624
003 P5A
005 20221213140615.0
007 cr cuuuuuauuuu
008 180906s2018 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
082 0 4 _acs
090 _acs
100 1 _aZamudio Espinosa, Alex Mauricio
_910312
245 1 0 _aHausdorff dimension for projections of dynamically defined complex Cantor sets.
260 _aRio de Janeiro:
_bIMPA,
_c2018.
300 _avideo online
500 _aSeminários de Sistemas Dinâmicos.
505 1 _aResumo: A classical theorem of Marstrand states that for any Borel subset F ?R2 HD(p?(F)) = min{1,HD(F)}, for almost all projection p?(x,y) = x+?y (with respect to Lebesgue measure in ?). Moreira was able to improve this theorem in the particular context of dynamically defined Cantor sets. He proved that given dynamically defined Cantor sets K1,K2 ? R satisfying some generic hypothesis one has HD(K1 +?·K2) =min{1,HD(K1)+HD(K2)}, for all ?= 0. We will talk about how Moreiras ideas can be generalized to Cantor sets in the complex plane, in particular we will have a similar formula which holds for dynamically defined complex Cantor sets. In particular, this Cantor sets include Julia sets associated to quadratic maps Qc(z) = z2 + c when the parameter c is not in the Mandelbrot set.
650 0 4 _aMatematica.
_2larpcal
_919899
650 0 4 _aSistemas dinamicos.
_913212
697 _aCongressos e Seminários.
_923755
700 1 _aMoreira, Carlos Gustavo T. de A.
_912783
856 4 _zVIDEO
_uhttps://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2
942 _2ddc
_cBK
999 _aHAUSDORFF dimension for projections of dynamically defined complex Cantor sets. Rio de Janeiro: IMPA, 2018. video online. Disponível em: https://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2. Acesso em: 30 ago. 2017.
_c37247
_d37247