000 01695n a2200289#a 4500
001 37917
003 P5A
005 20221213140604.0
007 cr cuuuuuauuuu
008 180118s2017 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
082 0 4 _acs
090 _acs
100 1 _aEstumano, Diego
_u(Universidade Federal do Pará, Brazil)
_99382
245 1 0 _aABC - Approximate Bayesian Computation/
_cDiego Estumano.
246 3 2 _aMinicurso: ABC - Approximate Bayesian Computation
260 _aRio de Janeiro:
_bIMPA,
_c2017.
300 _avideo online
500 _aMinicurso - 2 aulas
505 2 _aThe so-called Approximate Bayesian Computation (ABC) has been developed for cases where the computation of the likelihood function becomes intractable, for example, when the experimental uncertainties cannot be appropriately modeled in terms of analytical distribution functions. This mini-course will present basic aspects of Approximate Bayesian Computation (ABC), as well as algorithms, including those that allow for simultaneous model selection and parameter estimation.
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
856 4 _zAULA 1
_uhttps://www.youtube.com/watch?v=kFKufYNposM&list=PLo4jXE-LdDTQDyz2aK0awJwreyZlvWvNw&index=1
856 4 _zAULA 2
_uhttps://www.youtube.com/watch?v=RGonZRmYIEA&list=PLo4jXE-LdDTQDyz2aK0awJwreyZlvWvNw&index=2
942 _2ddc
_cBK
999 _aABC - Approximate Bayesian Computation. Diego Estumano. Rio de Janeiro: IMPA, 2017. video online. Disponível em: <https://www.youtube.com/watch?v=kFKufYNposM&list=PLo4jXE-LdDTQDyz2aK0awJwreyZlvWvNw&index=1>. Acesso em: 18 jan. 2018.
_c36578
_d36578