000 | 01535n a2200265#a 4500 | ||
---|---|---|---|
001 | 36071 | ||
003 | P5A | ||
005 | 20221213140534.0 | ||
007 | cr cuuuuuauuuu | ||
008 | 150203s2015 bl por d | ||
035 | _aocm51338542 | ||
040 |
_aP5A _cP5A |
||
090 | _acs | ||
100 | 1 |
_aKleene, Stephen J. _u(Brown University, USA) _96766 |
|
245 | 1 | 0 | _aNon-compactness of Moduli spaces of finite topology embedded minimal surfaces. |
260 |
_aRio de Janeiro: _bIMPA, _c2015. |
||
300 | _avideo online | ||
505 | 2 | _aI will discuss recent work in which singular perturbation methods are applied to show non-compactness of the moduli space M(4, g) of finite topology minimal surfaces with four ends and high genus g. Additionally, I will outline how I expect the technique to generalize to the space M(k, g). This is joint work with Niels Martin Moller . | |
650 | 0 | 4 |
_aMatematica. _2larpcal _919899 |
697 |
_aCongressos e Seminários. _923755 |
||
711 | 2 |
_aHyperbolic Geometry and Minimal Surfaces _d(2015: _cIMPA, Rio de Janeiro, Brazil) _96755 |
|
856 | 4 |
_zVIDEO _uhttps://www.youtube.com/watch?v=cYHvAD0Hj4s&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=16 |
|
856 | 4 |
_zRESUMOS _uhttps://impa.br/wp-content/uploads/2016/12/abstracts.pdf |
|
942 |
_2ddc _cBK |
||
999 |
_aNON-COMPACTNESS of Moduli spaces of finite topology embedded minimal surfaces. Rio de Janeiro: IMPA, 2015. video online. DisponÃvel em: <https://www.youtube.com/watch?v=cYHvAD0Hj4s&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=16>. Acesso em: 3 fev. 2015. _c34927 _d34927 |