000 01535n a2200265#a 4500
001 36071
003 P5A
005 20221213140534.0
007 cr cuuuuuauuuu
008 150203s2015 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _acs
100 1 _aKleene, Stephen J.
_u(Brown University, USA)
_96766
245 1 0 _aNon-compactness of Moduli spaces of finite topology embedded minimal surfaces.
260 _aRio de Janeiro:
_bIMPA,
_c2015.
300 _avideo online
505 2 _aI will discuss recent work in which singular perturbation methods are applied to show non-compactness of the moduli space M(4, g) of finite topology minimal surfaces with four ends and high genus g. Additionally, I will outline how I expect the technique to generalize to the space M(k, g). This is joint work with Niels Martin Moller .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
711 2 _aHyperbolic Geometry and Minimal Surfaces
_d(2015:
_cIMPA, Rio de Janeiro, Brazil)
_96755
856 4 _zVIDEO
_uhttps://www.youtube.com/watch?v=cYHvAD0Hj4s&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=16
856 4 _zRESUMOS
_uhttps://impa.br/wp-content/uploads/2016/12/abstracts.pdf
942 _2ddc
_cBK
999 _aNON-COMPACTNESS of Moduli spaces of finite topology embedded minimal surfaces. Rio de Janeiro: IMPA, 2015. video online. Disponível em: <https://www.youtube.com/watch?v=cYHvAD0Hj4s&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=16>. Acesso em: 3 fev. 2015.
_c34927
_d34927