000 02030n a2200265#a 4500
001 36067
003 P5A
005 20221213140534.0
007 cr cuuuuuauuuu
008 150203s2015 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _acs
100 1 _aAnderson, Michael
_u(Stony Brook University, USA)
_96761
245 1 0 _aHandlebodies with constant curvature metrics and minimal surface boundary.
260 _aRio de Janeiro:
_bIMPA,
_c2015.
300 _avideo online
505 2 _aWe study the moduli space of constant curvature metrics g on a 3-d handlebody with boundary having mean curvature 0, so minimal surface boundary (or more generally CMC boundary). This is a generalization of Alexandrov immersed minimal surfaces in 3-d space forms. We prove that this moduli space is a smooth manifold, locally diffeomorphic to the Teichmuller space of the boundary surface, when the genus of the boundary is at least 2. We conjecture that the spaces are in fact diffeomorphic (on each component). This result is false per se for genus 1 boundaries, but the method of proof gives rise to a new proof of Brendle's solution of the Lawson conjecture on embedded minimal tori in S^3. The talk will discuss the context and basic ideas of the proof. We hope to discuss relations and/or questions with hyperbolic 3-manifolds .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
711 2 _aHyperbolic Geometry and Minimal Surfaces
_d(2015:
_cIMPA, Rio de Janeiro, Brazil)
_96755
856 4 _zVIDEO
_uhttps://www.youtube.com/watch?v=yWCYb6ef0u4&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=10
856 4 _zRESUMOS
_uhttps://impa.br/wp-content/uploads/2016/12/abstracts.pdf
942 _2ddc
_cBK
999 _aHANDLEBODIES with constant curvature metrics and minimal surface boundary. Rio de Janeiro: IMPA, 2015. video online. Disponível em: <https://www.youtube.com/watch?v=yWCYb6ef0u4&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=10>. Acesso em: 3 fev. 2015.
_c34923
_d34923