000 02267n a2200289#a 4500
001 35755
003 P5A
005 20221213140529.0
007 cr cuuuuuauuuu
008 140904s2014 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _acs
100 1 _aDickstein, Flávio
_u(UFRJ, Rio de Janeiro, Brazil)
_943611
245 1 0 _aFinite-time blowup for a complex Ginzburg-Landau equation.
260 _aRio de Janeiro:
_bIMPA,
_c2014.
300 _avideo online
500 _aThe Fourth Workshop on Fluids and PDE was held at the National Institute of Pure and Applied Mathematics (IMPA) in Rio de Janeiro, Brazil, from Monday 26 May to Friday 30 May 2014. This workshop is held every two to three years in Brazil. The fourth edition of the workshop was the closing event of a Thematic Program on Incompressible Fluids Dynamics, to be held at IMPA next Spring. Hence, the focus of the workshop will be incompressible fluid mechanics .
505 2 _aWe consider the complex Ginzburg-Landau equation [] in Rn where []. We prove that negative energy solutions blow up in finite time if []. For a fixed initial value we obtain estimates of the blow-up time [] as []. It turns out that [] stays bounded (respectively, goes to infinity) as [] in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global). This is a joint work with Thierry Cazenave, from U. Paris VI, and Fred Weissler, from U. Paris XIII .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
711 2 _aWorkshop on Fluids
_n(IV:
_d2014:
_cIMPA, Rio de Janeiro, Brazil)
_96490
856 4 _zVIDEO
_uhttps://www.youtube.com/watch?v=ggPFIEzjypE&list=PLo4jXE-LdDTRo-UkmrGNasyLvdoV4YrBq&index=14&t=0s
856 4 _zEVENTO
_uhttps://impa.br/sobre/memoria/reunioes-cientificas/iv-workshop-em-fluidos-e-edp/
856 4 _zRESUMO
_uhttps://impa.br/wp-content/uploads/2017/12/IVFluidsEDP_booklet.pdf
942 _2ddc
_cBK
999 _aFINITE-TIME blowup for a complex Ginzburg-Landau equation. Rio de Janeiro: IMPA, 2014. video online. Disponível em: <https://www.youtube.com/watch?v=ggPFIEzjypE&list=PLo4jXE-LdDTRo-UkmrGNasyLvdoV4YrBq&index=14&t=0s>. Acesso em: 4 set. 2014.
_c34613
_d34613