Toward 6G : a new era of convergence / Amin Ebrahimzadeh, Martin Maier.
Material type: TextPublisher: Hoboken, New Jersey : John Wiley & Sons, Inc., [2021]Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2020]Description: 1 PDFContent type:- text
- electronic
- online resource
- 9781119658030
- 621.3845/6
Includes bibliographical references and index.
Foreword -- Preface -- Acknowledgments -- Acronyms -- -- 1 The 6G Vision 1 -- 1.1 Introduction 1 -- 1.2 Evolution of Mobile Networks and Internet 4 -- 1.3 6G Network Architectures and Key Enabling Technologies 7 -- 1.3.1 Four-Tier Networks: Space-Air-Ground-Underwater 7 -- 1.3.2 Key Enabling Technologies 8 -- 1.4 Toward 6G: A New Era of Convergence 12 -- 1.5 Scope and Outline of Book 15 -- 1.5.1 Scope 15 -- 1.5.2 Outline 17 -- 2 Immersive Tactile Internet Experiences via Edge Intelligence 21 -- 2.1 Introduction 21 -- 2.2 The Tactile Internet: Automation or Augmentation of the Human? 29 -- 2.3 Haptic Traffic Characterization 36 -- 2.3.1 Teleoperation Experiments 38 -- 2.3.2 Packet Interarrival Times 39 -- 2.3.3 Sample Autocorrelation 45 -- 2.4 FiWi Access Networks: Revisited for Clouds and Cloudlets 48 -- 2.4.1 FiWi: EPON and WLAN 48 -- 2.4.2 C-RAN: Cloud vs. Cloudlet 51 -- 2.4.3 Low-Latency FiWi Enhanced LTE-A HetNets 52 -- 2.5 Delay Analysis 56 -- 2.5.1 Assumptions 56 -- 2.5.2 Local Teleoperation 57 -- 2.5.3 Non-Local Teleoperation 62 -- 2.6 Edge Sample Forecast 63 -- 2.7 Results 69 -- 2.8 Conclusions 74 -- 3 Context- and Self-Awareness for Human-Agent-Robot Task Coordination -- 3.1 Introduction 77 -- 3.2 System Model 80 -- 3.2.1 Network Architecture 80 -- 3.2.2 Energy and Motion Models of Mobile Robots 81 -- 3.3 Context-Aware Multi-Robot Task Coordination 84 -- 3.3.1 Illustrative Case Study 84 -- 3.3.2 Problem Formulation 85 -- 3.3.3 The Proposed Algorithm 89 -- 3.4 Self-Aware Optimal Motion Planning 91 -- 3.5 Delay and Reliability Analysis 94 -- 3.5.1 Delay Analysis 95 -- 3.5.2 Reliability Analysis 99 -- 3.6 Results 101 -- 3.7 Conclusions 108 -- 4 Delay-Constrained Teleoperation Task Scheduling and Assignment -- 4.1 Introduction 111 -- 4.2 System Model and Network Architecture 114 -- 4.3 Problem Statement 115 -- 4.3.1 Problem Formulation 116 -- 4.3.2 Model Scalability 120 -- 4.4 Algorithmic Solution 121 -- 4.4.1 Illustrative Case Study 121 -- 4.4.2 Proposed Task Coordination Algorithm 122.
4.4.3 Complexity Analysis 124 -- 4.5 Delay Analysis 124 -- 4.6 Results 129 -- 4.7 Discussion 137 -- 4.8 Conclusions 139 -- 5 Cooperative Computation Offloading in FiWi Enhanced Mobile Networks 141 -- 5.1 Introduction 141 -- 5.2 System Model 145 -- 5.3 Energy-Delay Analysis of the Proposed Cooperative Offloading 147 -- 5.3.1 Average Response Time 148 -- 5.3.2 Average Energy Consumption per Task 155 -- 5.4 Energy-Delay Trade-off via Self-organization 156 -- 5.5 Results 161 -- 5.6 Conclusions 170 -- 6 Decentralization via Blockchain 173 -- 6.1 Introduction 173 -- 6.2 Blockchain Technologies 177 -- 6.2.1 Ethereum vs. Bitcoin Blockchains 177 -- 6.2.2 Ethereum: The DAO 181 -- 6.3 Blockchain IoT and Edge Computing 183 -- 6.3.1 Blockchain IoT (BIoT): Recent Progress and Related Work 183 -- 6.3.2 Blockchain Enabled Edge Computing 186 -- 6.4 Decentralizing the Tactile Internet 187 -- 6.4.1 AI-enhanced MEC 188 -- 6.4.2 Crowdsourcing 190 -- 6.5 Nudging: From Judge Contract to Nudge Contract 192 -- 6.5.1 Cognitive Assistance: From AI to Intelligence Amplification (IA) 192 -- 6.5.2 HITL Hybrid-Augmented Intelligence 192 -- 6.5.3 Decentralized Self-Organizing Cooperative (DSOC) 193 -- 6.5.4 Nudge Contract: Nudging via Smart Contract 194 -- 6.6 Conclusions 195 -- 7 XR in the 6G Post-Smartphone Era 197 -- 7.1 Introduction 197 -- 7.2 6G Vision: Putting (Internet of No) Things in Perspective 199 -- 7.3 Extended Reality (XR): Unleashing Its Full Potential 201 -- 7.3.1 The Reality-Virtuality Continuum 201 -- 7.3.2 The Multiverse: An Architecture of Advanced XR Experiences 202 -- 7.4 Internet of No Things: Invisible-to-Visible (I2V) Technologies 204 -- 7.4.1 Extrasensory Perception Network (ESPN) 206 -- 7.4.2 Nonlocal Awareness of Space and Time: Mimicking the Quantum Realm 208 -- 7.5 Results 211 -- 7.6 Conclusions 214 -- A Proof of Lemmas 215 -- A.1 Proof of Lemma 3.1 215 -- A.2 Proof of Lemma 3.2 216 -- A.3 Proof of Lemma 3.3 217 -- A.4 Proof of Lemma 5.1 218 -- Bibliography -- Index 239.
Restricted to subscribers or individual electronic text purchasers.
"The current deployment of 5G cellular systems is exposing the inherent limitations of the wireless communication system, compared to its original premise as an enabler for Internet of Everything (IoE) applications. IoE services will require an end-to-end design of communication, control, and computation functionalities, which to date has been largely overlooked. These 5G drawbacks are currently spurring worldwide activities focused on defining the next-generation 6G wireless system that can truly integrate far-reaching applications ranging from autonomous systems to XR and haptics. 6G will not be a mere exploration of more spectrum at high-frequency bands, but it will rather be a convergence of upcoming technological trends. While traditional applications will remain central to 6G, the key determinants of system performance will be the following four new applications domains: (i) multisensory XR applications, (ii) connected robotics and autonomous systems, (iii) wireless brain-computer interaction, and (iv) blockchain and distributed ledger technologies"-- Provided by publisher.
Also available in print.
Mode of access: World Wide Web
There are no comments on this title.