Image from OpenLibrary

Wall to wall optimal transport.

By: Contributor(s): Publication details: Rio de Janeiro: IMPA, 2014.Description: video onlineSubject(s): Online resources:
Partial contents:
How much stuff can be transported by an incompressible flow containing a specified amount of kinetic energy or enstrophy? We study this problem for steady 2D flows focusing on passive tracer transport between two parallel impermeablewalls, employing the calculus of variations to find divergence-free velocity field with a given intensity budget that maximize transport between the walls. The maximizing velocity fields, i.e. the optimal flows, consist of arrays of (convection- like) cells. Results are reported in terms of the Nusselt number Nu, the convective enhancement of transport normalized by the flow-free diffusive transport, and the Péclect number Pe, the dimensionless gauge of the strength of the flow. For both energy and enstrophy constraints we find that as Pe increases, the maximum transport is achieved by cells of decreasing aspect ratio. For each of the two flow intensity constraints, we also consider buoyancy-driven flows the same constraint to see how the scalings for transport reported in the literature compare with the absolute upper bounds. This work provides new insight into both steady 2D optimal transport and turbulent transport, an increasingly lively area of research in geophysical, astrophysical, and engineering fluid dynamics. This is joint work with Pedram Hassanzadeh (UC Berkeley/Harvard) and Gregory P. Chini (University of New Hampshire) .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The Fourth Workshop on Fluids and PDE was held at the National Institute of Pure and Applied Mathematics (IMPA) in Rio de Janeiro, Brazil, from Monday 26 May to Friday 30 May 2014. This workshop is held every two to three years in Brazil. The fourth edition of the workshop was the closing event of a Thematic Program on Incompressible Fluids Dynamics, to be held at IMPA next Spring. Hence, the focus of the workshop will be incompressible fluid mechanics .

How much stuff can be transported by an incompressible flow containing a specified amount of kinetic energy or enstrophy? We study this problem for steady 2D flows focusing on passive tracer transport between two parallel impermeablewalls, employing the calculus of variations to find divergence-free velocity field with a given intensity budget that maximize transport between the walls. The maximizing velocity fields, i.e. the optimal flows, consist of arrays of (convection- like) cells. Results are reported in terms of the Nusselt number Nu, the convective enhancement of transport normalized by the flow-free diffusive transport, and the Péclect number Pe, the dimensionless gauge of the strength of the flow. For both energy and enstrophy constraints we find that as Pe increases, the maximum transport is achieved by cells of decreasing aspect ratio. For each of the two flow intensity constraints, we also consider buoyancy-driven flows the same constraint to see how the scalings for transport reported in the literature compare with the absolute upper bounds. This work provides new insight into both steady 2D optimal transport and turbulent transport, an increasingly lively area of research in geophysical, astrophysical, and engineering fluid dynamics. This is joint work with Pedram Hassanzadeh (UC Berkeley/Harvard) and Gregory P. Chini (University of New Hampshire) .

There are no comments on this title.

to post a comment.
© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha