Normal view
MARC view
Clones (Algebra) (Topical Term)
Work cat.: Szendrei, A. Clones in universal algebra, 1986: p. 11 (a set of operations on a fixed set 'A' is said to be a clone on 'A' if it contains the projections and is closed under superposition)
CompuMath cit. index (clones)
Eisenreich, G. Mathematik, 1983 (clone [of an algebra] [UA (universal algebra)])
GrÌatzer, G. Universal algebra, c1979: p. 45 (clones)
ASTI; Encyc. dict. math.; James math. dict.; McGraw-Hill dict. sci. tech.; Hennepin; Web. 3; TEST