3D IC and RF SiPs : (Record no. 40808)

MARC details
000 -LEADER
fixed length control field 10732nam a2200553 i 4500
001 - CONTROL NUMBER
control field 8340184
003 - CONTROL NUMBER IDENTIFIER
control field IEEE
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230927112400.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180605s2018 mau ob 001 eng d
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
Canceled/invalid LC control number 2018000679 (print)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119289654
Qualifying information electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119289647
Qualifying information print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119289678
Qualifying information pdf
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119289661
Qualifying information ePub
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119289654
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (CaBNVSL)mat08340184
035 ## - SYSTEM CONTROL NUMBER
System control number (IDAMS)0b00006487cb64f7
040 ## - CATALOGING SOURCE
Original cataloging agency CaBNVSL
Language of cataloging eng
Description conventions rda
Transcribing agency CaBNVSL
Modifying agency CaBNVSL
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.39/5
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Hwang, Lih-Tyng,
Relator term author.
245 10 - TITLE STATEMENT
Title 3D IC and RF SiPs :
Remainder of title advanced stacking and planar solutions for 5G mobility /
Statement of responsibility, etc. by Professor Lih-Tyng Hwang, Professor Tzyy-Sheng Jason Horng.
250 ## - EDITION STATEMENT
Edition statement 1st edition.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hoboken, New Jersey :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons,
Date of production, publication, distribution, manufacture, or copyright notice 2018.
264 #2 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture [Piscataqay, New Jersey] :
Name of producer, publisher, distributor, manufacturer IEEE Xplore,
Date of production, publication, distribution, manufacture, or copyright notice [2018]
300 ## - PHYSICAL DESCRIPTION
Extent 1 PDF (464 pages).
336 ## - CONTENT TYPE
Content type term text
Source rdacontent
337 ## - MEDIA TYPE
Media type term electronic
Source isbdmedia
338 ## - CARRIER TYPE
Carrier type term online resource
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 1 MM and MTM for Mobility 1 -- 1.1 Convergence in Communications and the Future, 5G 3 -- 1.1.1 From 1980 (1G) to 2010 (4G) 3 -- 1.1.2 LTE-A and Rel 10 in 2010s 6 -- 1.1.3 The Future: 5G and IoT (Targeting 2020) 8 -- 1.2 Review of Key Products in Communication Networks 14 -- 1.2.1 Wired Communications 14 -- 1.2.2 Wireless Communications 21 -- 1.3 MM and MTM, an Intro to Hardware Technology 31 -- 1.3.1 Moore's Law 31 -- 1.3.2 More Than Moore 43 -- 1.3.3 MTM Packaging Map and MM�i�� MTM Business Model 53 -- 2 Interconnects 67 -- 2.1 Hierarchy of Interconnection 69 -- 2.1.1 On�i�� Chip (Level 0) Interconnections 69 -- 2.1.2 Peripheral Pads on Semiconductor ICs (Level 0) 72 -- 2.1.3 Al pads (Wirebond and Flip Chip) 73 -- 2.1.4 Cu/Low�i�� K Re-Distribution Using Damascene Techniques (Flip Chip) 74 -- 2.1.5 Au Pads (III-V) 77 -- 2.1.6 Level 1 Interconnections: WB and FC--Why FC Interconnections are Preferred? 78 -- 2.2 Level 1, Interconnection Gap in FC-PBGA, and Level 0.5 80 -- 2.2.1 Wirebonds 80 -- 2.2.2 Flip Chip Bumps with UBM 85 -- 2.2.3 TSV and Microbumps, Cu or Au Stud Bumps (Level 0.5) 91 -- 2.3 Changing Dynamics of Semiconductor Manufacturing 100 -- 2.3.1 Bumping Itself is a Business 100 -- 2.3.2 Cu/Low-K in BEOL 102 -- 2.3.3 Wafer Fab Foundry and OSAT are Competing for Their Business Shares 102 -- 3 State�i�� of �i��the�i�� Art IC Packages, Modules, and Substrates 111 -- 3.1 Single-Chip Packages (SCPs): Standardized Packages 113 -- 3.1.1 Lead Frame Based: SO, QFP/QFN, and TAB 114 -- 3.1.2 Organic Interposer Based: BGA/CSP and LGA 114 -- 3.1.3 Known Good Bare Die 120 -- 3.1.4 Single-Chip Packaging Processes 121 -- 3.1.5 IC Testing 123 -- 3.2 Advanced IC Substrates and Assembly 124 -- 3.2.1 MLO Substrates for ICs 126 -- 3.2.2 Multi-Layered Organic (MLO) for IC Packages 127 -- 3.3 Customized Assemblies: MCP/MCMs and Modules 130 -- 3.3.1 Multi-Chip Module (MCM) or Multi-Chip Package (MCP) 131 -- 3.3.2 Modules 132 -- 4 Passives Technology 139 -- 4.1 Thick-Film Ceramic Technology (TFC) for MLC 146.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.1.1 Green Tapes 146 -- 4.1.2 Thick-Film Fabrication 149 -- 4.1.3 LTCC EPs, Thick-Film IPD, and LTCC-Based RF Modules 151 -- 4.1.4 SMT (or SMD) 155 -- 4.2 MLO Passives by Laminate Organic (LO) 156 -- 4.2.1 MLO-Based RF Modules 156 -- 4.2.2 Laminates 156 -- 4.2.3 MLO Fabrication 157 -- 4.2.4 MLO EPs and RF Modules 159 -- 4.3 On-Chip Passives 166 -- 4.3.1 RF Isolation (BCM4330) 166 -- 4.3.2 Monolithic FEOL On-Chip Passives 168 -- 4.3.3 Rs, Ls, and Cs in BEOL Layers 170 -- 4.3.4 Goals 172 -- 4.4 Thin-Film Multilayer (TFM) and IPD 173 -- 4.5 Summary on Passives Fabrication Technologies: Solutions for RF-Passives Systems 191 -- 5 Electrical Design for 5G Hardware--Digital Focus 199 -- 5.1 Introduction to PCB 201 -- 5.2 Signal Transmission Techniques: Singled-Ended and Differential Signals 202 -- 5.2.1 Single-Ended and Differential 202 -- 5.3 Co-Design Examples 216 -- 5.3.1 Interconnection RF Models and Library 216 -- 5.3.2 Chip-Package and Chip-Package-Board Co-Designs 219 -- 5.4 Wide I/O Memory Using TSVs 228 -- 5.4.1 JEDEC Memory Standards 230 -- 5.4.2 Data Structure Using TSV-Based Wide I/O 230 -- 6 Electrical Design for 5G Hardware--RF Focus 239 -- 6.1 PHY, Modulated RF Carriers; a PoP Possible? 240 -- 6.1.1 Frequency Bands and Wave Propagation Characteristics 240 -- 6.1.2 Narrow-Band Process and CW Carrier for Digital Signals 242 -- 6.2 Antennas 244 -- 6.2.1 Two Often Encountered RF Passive Structures in Modern Portable Electronics: Antenna and Its Feed 244 -- 6.2.2 Types of Antennas: Linear, Microstrip-Patch, and Multi-Element Antenna 245 -- 6.2.3 Active-Integrated Antennas and Measurement of Antenna Performance 251 -- 6.3 RF Functional Components 256 -- 6.3.1 Bandpass Filters 256 -- 6.3.2 Baluns 257 -- 6.3.3 Switches and Duplexers 262 -- 6.4 EMI/EMC 263 -- 6.4.1 Sources of Interference 264 -- 6.4.2 Diagnostic and Regulations Conformation Techniques 264 -- 6.4.3 Containment Techniques 267 -- 7 Product, Process Development, and Control 271.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 7.1 Business Processes 272 -- 7.1.1 Strategic Management (Product and Process Development) 272 -- 7.1.2 Design and Manufacturing; Outsourced or Not 273 -- 7.2 History of Statistical Approach for Quality Management 273 -- 7.2.1 Quality Guidelines and Standards 274 -- 7.2.2 Semiconductor Process Development and Characterization 274 -- 7.3 APQP--An Iterative Process for Product and Process Development 275 -- 7.3.1 Translate Product Ideas Into Processes 275 -- 7.4 FMEA, Control Plan, and Initial Process Study 276 -- 7.4.1 RPN 276 -- 7.4.2 Locating the Root Causes 281 -- 7.4.3 Pre-Launch Control Plan 283 -- 7.4.4 Initial Process Study 284 -- 7.5 PPAP and SPC 287 -- 7.5.1 PPAP 287 -- 7.5.2 SPC 287 -- 8 Product Life and Reliability Assessment 291 -- 8.1 Product Life Prediction 292 -- 8.1.1 Calculate MTTF from Processes and Theoretical Distributions 293 -- 8.1.2 Practices to Obtain the Expected Product Life 296 -- 8.1.3 Activation Energy 300 -- 8.2 Reliability Assessment 301 -- 8.2.1 Assessment Variables for Reliability Tests 302 -- 8.2.2 Reliability Assessment Practices 303 -- 8.2.3 Discussions on Weibull Analysis and Weibull Plotting 309 -- 9 Hardware Solutions for 5G Mobility 317 -- 9.1 5G Mobility Products and Planar Solutions 318 -- 9.1.1 High-Density and Logic Products 319 -- 9.1.2 RF-Passives Systems 326 -- 9.1.3 A Summary: WLP and LPP Used for Both HD&L and RF-Passives Products 333 -- 9.2 Advanced Interconnection and Future Business Model 336 -- 9.2.1 Advanced Interconnection 336 -- 9.2.2 New Business Model 341 -- 9.3 Finale--What's Not 343 -- 9.3.1 New from Wafer Foundries 343 -- 9.3.2 System and Architectural Design of Mobile Handsets 345 -- 9.3.3 Thermo-Mechanical and Thermal Science 349 -- 9.3.4 Sensors and IoT 349 -- A Failure Mechanisms and Failure Analysis 357 -- A.1 Failure Mechanisms, or Macroscopic Models 358 -- A.1.1 Silicon Oxide Breakdown 359 -- A.1.2 Stress-Induced Migration (SM) 360 -- A.1.3 Electro-Migration (EM) and Hillocks 360.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note A.1.4 Spiking 362 -- A.1.5 IMC, Purple plague (Gold-Al Intermetallics) 363 -- A.1.6 Fatigue and Creeping 364 -- A.1.7 Die Cracking 366 -- A.1.8 Delamination and Popcorning 366 -- A.1.9 Corrosion 367 -- A.2 Failure Analysis (FA) Techniques and FA Tools 368 -- A.2.1 De-Processing (or De-Capping) Techniques 368 -- A.2.2 Microscopic and Analytical Tools 369 -- B ANOVA 375 -- B.1 One-Way ANOVA 376 -- B.2 Two-Way ANOVA 377 -- C Gauge R&R and DOE 381 -- C.1 GR&R 381 -- C.1.1 AIAG's Xbar/Range Method for Gauge R&R Study 381 -- C.1.2 Minitab 383 -- C.1.3 GR&R Casted in the ANOVA Format 383 -- C.1.4 Criteria 384 -- C.2 DOE 384 -- C.2.1 DOE Guidelines 385 -- C.2.2 2k Runs, Unreplicated Case 386 -- C.2.3 Fractional Factorial Designs, 2k-p Run, p = 1, 2,.., < k 399 -- D Statistics Tables 409 -- D.1 F Distribution 409 D.2 Poisson Table of Expected # of Occurrences at a Confidence Level (C.L.) 409 -- D.3 MR Percentile Table 409.
506 ## - RESTRICTIONS ON ACCESS NOTE
Terms governing access Restricted to subscribers or individual electronic text purchasers.
520 ## - SUMMARY, ETC.
Summary, etc. 3D IC and RF SiPs: Advanced Stacking and Planar Solutions for 5G Mobility Lih-Tyng Hwang, National Sun Yat-Sen University, Taiwan, Jason Tzyy-Sheng Horng, National Sun Yat-Sen University, Taiwan A concise summary of the state of the art, this book is an interdisciplinary guide to enabling technologies for 3D ICs and 5G mobility, covering packaging, design to product life and reliability assessments. Readers are introduced to the markets, technology drivers, integrated circuits, packaging and substrate trends that go hand-in-hand with the development of 3D IC and RF SiP, as well as related digital and RF designs, and product life and reliability assessments. Smart phone tear-down is used to illustrate the key components for mobility (4G and future 5G), such as AP/mobile memory and RFIC/RF FE. Other essential topics include packaging technology, high density logic design, RF system integration and future trends in MTM technology. . Features an interdisciplinary approach to the enabling technologies and hardware for 3D ICs and 5G mobility. Presents statistical treatments and examples with tools that are easily accessible, such as Microsoft's Excel and Minitab. Fundamental design topics such as electromagnetic design for logic and RF/passives centric circuits are explained in detail. Provides chapter-wise review questions and powerpoint slides as teaching tools 3D IC and RF SiPs offers graduate students and researchers an essential guide to advanced stacking and planar solutions for 5G mobility. It can also be used as a reference text for engineers and advanced students of semiconductors, communications hardware, and IC packaging technologies.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Also available in print.
538 ## - SYSTEM DETAILS NOTE
System details note Mode of access: World Wide Web
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher; resource not viewed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Mobile communication systems
General subdivision Technological innovations.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Horng, Tzyy-sheng Jason,
Relator term author.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element IEEE Xplore (Online Service),
Relator term distributor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element Wiley,
Relator term publisher.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Hwang, Lih-Tyng, author.
Title 3D IC and RF SiPs
Edition 1st edition.
Place, publisher, and date of publication Hoboken, NJ : John Wiley & Sons, 2018
International Standard Book Number 9781119289647
Record control number (DLC) 2017052146
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Abstract with links to resource
Uniform Resource Identifier <a href="https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8340184">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8340184</a>

No items available.

© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha