Adaptive filters / (Record no. 40043)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 16094nam a2201957 i 4500 |
001 - CONTROL NUMBER | |
control field | 5237520 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | IEEE |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20230927112344.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr |n||||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 090527t20152008njua ob 001 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9780470374122 |
Qualifying information | electronic |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780470253885 |
Qualifying information | paper |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 0470374128 |
Qualifying information | electronic |
024 7# - OTHER STANDARD IDENTIFIER | |
Standard number or code | 10.1002/9780470374122 |
Source of number or code | doi |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaBNVSL)mat05237520 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (IDAMS)0b000064810958b8 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | CaBNVSL |
Language of cataloging | eng |
Description conventions | rda |
Transcribing agency | CaBNVSL |
Modifying agency | CaBNVSL |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 621.3815/324 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Sayed, Ali H. |
Relator term | author. |
245 10 - TITLE STATEMENT | |
Title | Adaptive filters / |
Statement of responsibility, etc. | Ali H. Sayed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Hoboken, New Jersey : |
Name of producer, publisher, distributor, manufacturer | Wiley-Interscience : |
Date of production, publication, distribution, manufacture, or copyright notice | c2008. |
264 #2 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | [Piscataqay, New Jersey] : |
Name of producer, publisher, distributor, manufacturer | IEEE Xplore, |
Date of production, publication, distribution, manufacture, or copyright notice | 2008. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 PDF (xxx, 786 pages) : |
Other physical details | illustrations. |
336 ## - CONTENT TYPE | |
Content type term | text |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | electronic |
Source | isbdmedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Source | rdacarrier |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc. note | Includes bibliographical references (p. 758-774) and indexes. |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Preface and Acknowledgments -- Notation and Symbols -- BACKGROUND MATERIAL -- A. Random Variables -- A.1 Variance of a Random Variable -- A.2 Dependent Random Variables -- A.3 Complex-Valued Random Variables -- A.4 Vector-Valued Random Variables -- A.5 Gaussian Random Vectors -- B. Linear Algebra -- B.1 Hermitian and Positive-Definite Matrices -- B.2 Range Spaces and Nullspaces of Matrices -- B.3 Schur Complements -- B.4 Cholesky Factorization -- B.5 QR Decomposition -- B.6 Singular Value Decomposition -- B.7 Kronecker Products -- C. Complex Gradients -- C.1 Cauchy-Riemann Conditions -- C.2 Scalar Arguments -- C.3 Vector Arguments -- PART I: OPTIMAL ESTIMATION -- 1. Scalar-Valued Data -- 1.1 Estimation Without Observations -- 1.2 Estimation Given Dependent Observations -- 1.3 Orthogonality Principle -- 1.4 Gaussian Random Variables -- 2. Vector-Valued Data -- 2.1 Optimal Estimator in the Vector Case -- 2.2 Spherically Invariant Gaussian Variables -- 2.3 Equivalent Optimization Criterion -- Summary and Notes -- Problems and Computer Projects -- PART II: LINEAR ESTIMATION -- 3. Normal Equations -- 3.1 Mean-Square Error Criterion -- 3.2 Minimization by Differentiation -- 3.3 Minimization by Completion-of-Squares -- 3.4 Minimization of the Error Covariance Matrix -- 3.5 Optimal Linear Estimator -- 4. Orthogonality Principle -- 4.1 Design Examples -- 4.2 Orthogonality Condition -- 4.3 Existence of Solutions -- 4.4 Nonzero-Mean Variables -- 5. Linear Models -- 5.1 Estimation using Linear Relations -- 5.2 Application: Channel Estimation -- 5.3 Application: Block Data Estimation -- 5.4 Application: Linear Channel Equalization -- 5.5 Application: Multiple-Antenna Receivers -- 6. Constrained Estimation -- 6.1 Minimum-Variance Unbiased Estimation -- 6.2 Example: Mean Estimation -- 6.3 Application: Channel and Noise Estimation -- 6.4 Application: Decision Feedback Equalization -- 6.5 Application: Antenna Beamforming -- 7. Kalman Filter. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 7.1 Innovations Process -- 7.2 State-Space Model -- 7.3 Recursion for the State Estimator -- 7.4 Computing the Gain Matrix -- 7.5 Riccati Recursion -- 7.6 Covariance Form -- 7.7 Measurement and Time-Update Form -- Summary and Notes -- Problems and Computer Projects -- PART III: STOCHASTIC GRADIENT ALGORITHMS -- 8. Steepest-Descent Technique -- 8.1 Linear Estimation Problem -- 8.2 Steepest-Descent Method -- 8.3 More General Cost Functions -- 9. Transient Behavior -- 9.1 Modes of Convergence -- 9.2 Optimal Step-Size -- 9.3 Weight-Error Vector Convergence -- 9.4 Time Constants -- 9.5 Learning Curve -- 9.6 Contour Curves of the Error Surface -- 9.7 Iteration-Dependent Step-Sizes -- 9.8 Newton?s Method -- 10. LMS Algorithm -- 10.1 Motivation -- 10.2 Instantaneous Approximation -- 10.3 Computational Cost -- 10.4 Least-Perturbation Property -- 10.5 Application: Adaptive Channel Estimation -- 10.6 Application: Adaptive Channel Equalization -- 10.7 Application: Decision-Feedback Equalization -- 10.8 Ensemble-Average Learning Curves -- 11. Normalized LMS Algorithm -- 11.1 Instantaneous Approximation -- 11.2 Computational Cost -- 11.3 Power Normalization -- 11.4 Least-Perturbation Property -- 12. Other LMS-Type Algorithms -- 12.1 Non-Blind Algorithms -- 12.2 Blind Algorithms -- 12.3 Some Properties -- 13. Affine Projection Algorithm -- 13.1 Instantaneous Approximation -- 13.2 Computational Cost -- 13.3 Least-Perturbation Property -- 13.4 Affine Projection Interpretation -- 14. RLS Algorithm -- 14.1 Instantaneous Approximation -- 14.2 Computational Cost -- Summary and Notes -- Problems and Computer Projects -- PART IV: MEAN-SQUARE PERFORMANCE -- 15. Energy Conservation -- 15.1 Performance Measure -- 15.2 Stationary Data Model -- 15.3 Energy Conservation Relation -- 15.4 Variance Relation -- 15.A Interpretations of the Energy Relation -- 16. Performance of LMS -- 16.1 Variance Relation -- 16.2 Small Step-Sizes -- 16.3 Separation Principle. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 16.4 White Gaussian Input -- 16.5 Statement of Results -- 16.6 Simulation Results -- 17. Performance of NLMS -- 17.1 Separation Principle -- 17.2 Simulation Results -- 17.A Relating NLMS to LMS -- 18. Performance of Sign-Error LMS -- 18.1 Real-Valued Data -- 18.2 Complex-Valued Data -- 18.3 Simulation Results -- 19. Performance of RLS and Other Filters -- 19.1 Performance of RLS -- 19.2 Performance of Other Filters -- 19.3 Performance Table for Small Step-Sizes -- 20. Nonstationary Environments -- 20.1 Motivation -- 20.2 Nonstationary Data Model -- 20.3 Energy Conservation Relation -- 20.4 Variance Relation -- 21. Tracking Performance -- 21.1 Performance of LMS -- 21.2 Performance of NLMS -- 21.3 Performance of Sign-Error LMS -- 21.4 Performance of RLS -- 21.5 Comparison of Tracking Performance -- 21.6 Comparing RLS and LMS -- 21.7 Performance of Other Filters -- 21.8 Performance Table for Small Step-Sizes -- Summary and Notes -- Problems and Computer Projects -- PART V: TRANSIENT PERFORMANCE -- 22. Weighted Energy Conservation -- 22.1 Data Model -- 22.2 Data-Normalized Adaptive Filters -- 22.3 Weighted Energy Conservation Relation -- 22.4 Weighted Variance Relation -- 23. LMS with Gaussian Regressors -- 23.1 Mean and Variance Relations -- 23.2 Mean Behavior -- 23.3 Mean-Square Behavior -- 23.4 Mean-Square Stability -- 23.5 Steady-State Performance -- 23.6 Small Step-Size Approximations -- 23.A Convergence Time -- 24. LMS with non-Gaussian Regressors -- 24.1 Mean and Variance Relations -- 24.2 Mean-Square Stability and Performance -- 24.3 Small Step-Size Approximations -- 24.A Independence and Averaging Analysis -- 25. Data-Normalized Filters -- 25.1 NLMS Filter -- 25.2 Data-Normalized Filters -- 25.A Stability Bound -- 25.B Stability of NLMS -- Summary and Notes -- Problems and Computer Projects -- PART VI: BLOCK ADAPTIVE FILTERS -- 26. Transform Domain Adaptive Filters -- 26.1 Transform-Domain Filters -- 26.2 DFT-Domain LMS. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 26.3 DCT-Domain LMS -- 26.A DCT-Transformed Regressors -- 27. Efficient Block Convolution -- 27.1 Motivation -- 27.2 Block Data Formulation -- 27.3 Block Convolution -- 28. Block and Subband Adaptive Filters -- 28.1 DFT Block Adaptive Filters -- 28.2 Subband Adaptive Filters -- 28.A Another Constrained DFT Block Filter -- 28.B Overlap-Add Block Adaptive Filters -- Summary and Notes -- Problems and Computer Projects -- PART VII: LEAST-SQUARES METHODS -- 29. Least-Squares Criterion -- 29.1 Least-Squares Problem -- 29.2 Geometric Argument -- 29.3 Algebraic Arguments -- 29.4 Properties of Least-Squares Solution -- 29.5 Projection Matrices -- 29.6 Weighted Least-Squares -- 29.7 Regularized Least-Squares -- 29.8 Weighted Regularized Least-Squares -- 30. Recursive Least-Squares -- 30.1 Motivation -- 30.2 RLS Algorithm -- 30.3 Regularization -- 30.4 Conversion Factor -- 30.5 Time-Update of the Minimum Cost -- 30.6 Exponentially-Weighted RLS Algorithm -- 31. Kalman Filtering and RLS -- 31.1 Equivalence in Linear Estimation -- 31.2 Kalman Filtering and Recursive Least-Squares -- 31.A Extended RLS Algorithms -- 32. Order and Time-Update Relations -- 32.1 Backward Order-Update Relations -- 32.2 Forward Order-Update Relations -- 32.3 Time-Update Relation -- Summary and Notes -- Problems and Computer Projects -- PART VIII: ARRAY ALGORITHMS -- 33. Norm and Angle Preservation -- 33.1 Some Difficulties -- 33.2 Square-Root Factors -- 33.3 Norm and Angle Preservation -- 33.4 Motivation for Array Methods -- 34. Unitary Transformations -- 34.1 Givens Rotations -- 34.2 Householder Transformations -- 35. QR and Inverse QR Algorithms -- 35.1 Inverse QR Algorithm -- 35.2 QR Algorithm -- 35.3 Extended QR Algorithm -- 35.A Array Algorithms for Kalman Filtering -- Summary and Notes -- Problems and Computer Projects -- PART IX: FAST RLS ALGORITHMS -- 36. Hyperbolic Rotations -- 36.1 Hyperbolic Givens Rotations -- 36.2 Hyperbolic Householder Transformations. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 36.3 Hyperbolic Basis Rotations -- 37. Fast Array Algorithm -- 37.1 Time-Update of the Gain Vector -- 37.2 Time-Update of the Conversion Factor -- 37.3 Initial Conditions -- 37.4 Array Algorithm -- 37.A Chandrasekhar Filter -- 38. Regularized Prediction Problems -- 38.1 Regularized Backward Prediction -- 38.2 Regularized Forward Prediction -- 38.3 Low-Rank Factorization -- 39. Fast Fixed-Order Filters -- 39.1 Fast Transversal Filter -- 39.2 FAEST Filter -- 39.3 Fast Kalman Filter -- 39.4 Stability Issues -- Summary and Notes -- Problems and Computer Projects -- PART X: LATTICE FILTERS -- 40. Three Basic Estimation Problems -- 40.1 Motivation for Lattice Filters -- 40.2 Joint Process Estimation -- 40.3 Backward Estimation Problem -- 40.4 Forward Estimation Problem -- 40.5 Time and Order-Update Relations -- 41. Lattice Filter Algorithms -- 41.1 Significance of Data Structure -- 41.2 A Posteriori-Based Lattice Filter -- 41.3 A Priori-Based Lattice Filter -- 42. Error-Feedback Lattice Filters -- 42.1 A Priori Error-Feedback Lattice Filter -- 42.2 A Posteriori Error-Feedback Lattice Filter -- 42.3 Normalized Lattice Filter -- 43. Array Lattice Filters -- 43.1 Order-Update of Output Estimation Errors -- 43.2 Order-Update of Backward Estimation Errors -- 43.3 Order-Update of Forward Estimation Errors -- 43.4 Significance of Data Structure -- Summary and Notes -- Problems and Computer Projects -- PART XI: ROBUST FILTERS -- 44. Indefinite Least-Squares -- 44.1 Indefinite Least-Squares -- 44.2 Recursive Minimization Algorithm -- 44.3 Time-Update of the Minimum Cost -- 44.4 Singular Weighting Matrices -- 44.A Stationary Points -- 44.B Inertia Conditions -- 45. Robust Adaptive Filters -- 45.1 A Posteriori-Based Robust Filters -- 45.2 ε-NLMS Algorithm -- 45.3 A Priori-Based Robust Filters -- 45.4 LMS Algorithm -- 45.A H1 Filters -- 46. Robustness Properties -- 46.1 Robustness of LMS -- 46.2 Robustness of εNLMS. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 46.3 Robustness of RLS -- Summary and Notes -- Problems and Computer Projects -- REFERENCES AND INDICES -- References -- Author Index -- Subject Index. |
506 1# - RESTRICTIONS ON ACCESS NOTE | |
Terms governing access | Restricted to subscribers or individual electronic text purchasers. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions. |
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE | |
Additional physical form available note | Also available in print. |
538 ## - SYSTEM DETAILS NOTE | |
System details note | Mode of access: World Wide Web |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on PDF viewed 12/21/2015. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Adaptive filters. |
655 #0 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
695 ## - | |
-- | Acoustics |
695 ## - | |
-- | Adaptation model |
695 ## - | |
-- | Adaptive algorithms |
695 ## - | |
-- | Adaptive equalizers |
695 ## - | |
-- | Adaptive filters |
695 ## - | |
-- | Additive noise |
695 ## - | |
-- | Additives |
695 ## - | |
-- | Algorithm design and analysis |
695 ## - | |
-- | Antenna measurements |
695 ## - | |
-- | Approximation algorithms |
695 ## - | |
-- | Approximation methods |
695 ## - | |
-- | Arrays |
695 ## - | |
-- | Artificial intelligence |
695 ## - | |
-- | Artificial neural networks |
695 ## - | |
-- | Bayesian methods |
695 ## - | |
-- | Bibliographies |
695 ## - | |
-- | Binary phase shift keying |
695 ## - | |
-- | Blind equalizers |
695 ## - | |
-- | Books |
695 ## - | |
-- | Channel estimation |
695 ## - | |
-- | Chebyshev approximation |
695 ## - | |
-- | Computational complexity |
695 ## - | |
-- | Computational efficiency |
695 ## - | |
-- | Computer aided software engineering |
695 ## - | |
-- | Computers |
695 ## - | |
-- | Context |
695 ## - | |
-- | Convergence |
695 ## - | |
-- | Correlation |
695 ## - | |
-- | Cost function |
695 ## - | |
-- | Covariance matrix |
695 ## - | |
-- | Data models |
695 ## - | |
-- | Data structures |
695 ## - | |
-- | Decision feedback equalizers |
695 ## - | |
-- | Delay |
695 ## - | |
-- | Digital filters |
695 ## - | |
-- | Discrete Fourier transforms |
695 ## - | |
-- | Discrete cosine transforms |
695 ## - | |
-- | Echo cancellers |
695 ## - | |
-- | Eigenvalues and eigenfunctions |
695 ## - | |
-- | Energy conservation |
695 ## - | |
-- | Equalizers |
695 ## - | |
-- | Equations |
695 ## - | |
-- | Estimation |
695 ## - | |
-- | Estimation error |
695 ## - | |
-- | Estimation theory |
695 ## - | |
-- | Extraterrestrial measurements |
695 ## - | |
-- | Face |
695 ## - | |
-- | Filter bank |
695 ## - | |
-- | Filtering algorithms |
695 ## - | |
-- | Filtering theory |
695 ## - | |
-- | Finite impulse response filter |
695 ## - | |
-- | Frequency domain analysis |
695 ## - | |
-- | Gaussian distribution |
695 ## - | |
-- | Gaussian noise |
695 ## - | |
-- | Gaussian processes |
695 ## - | |
-- | Geometry |
695 ## - | |
-- | Histograms |
695 ## - | |
-- | History |
695 ## - | |
-- | Indexes |
695 ## - | |
-- | Information filters |
695 ## - | |
-- | Inspection |
695 ## - | |
-- | Joints |
695 ## - | |
-- | Kalman filters |
695 ## - | |
-- | Lattices |
695 ## - | |
-- | Lead |
695 ## - | |
-- | Least squares approximation |
695 ## - | |
-- | Linear algebra |
695 ## - | |
-- | Linear matrix inequalities |
695 ## - | |
-- | Linear systems |
695 ## - | |
-- | Linearity |
695 ## - | |
-- | Manifolds |
695 ## - | |
-- | Materials |
695 ## - | |
-- | Mathematical model |
695 ## - | |
-- | Matrices |
695 ## - | |
-- | Matrix decomposition |
695 ## - | |
-- | Maximum likelihood estimation |
695 ## - | |
-- | Measurement uncertainty |
695 ## - | |
-- | Medical services |
695 ## - | |
-- | Noise |
695 ## - | |
-- | Noise measurement |
695 ## - | |
-- | OFDM |
695 ## - | |
-- | Optimization |
695 ## - | |
-- | Oscillators |
695 ## - | |
-- | Performance analysis |
695 ## - | |
-- | Poles and zeros |
695 ## - | |
-- | Polynomials |
695 ## - | |
-- | Prediction algorithms |
695 ## - | |
-- | Presses |
695 ## - | |
-- | Probability density function |
695 ## - | |
-- | Projection algorithms |
695 ## - | |
-- | Qualifications |
695 ## - | |
-- | Random processes |
695 ## - | |
-- | Random variables |
695 ## - | |
-- | Receivers |
695 ## - | |
-- | Reflection |
695 ## - | |
-- | Reliability theory |
695 ## - | |
-- | Robustness |
695 ## - | |
-- | Sections |
695 ## - | |
-- | Signal to noise ratio |
695 ## - | |
-- | Silicon compounds |
695 ## - | |
-- | Simulation |
695 ## - | |
-- | Speech |
695 ## - | |
-- | Speech processing |
695 ## - | |
-- | Stability analysis |
695 ## - | |
-- | Stacking |
695 ## - | |
-- | Steady-state |
695 ## - | |
-- | Stochastic processes |
695 ## - | |
-- | Symmetric matrices |
695 ## - | |
-- | Technological innovation |
695 ## - | |
-- | Terminology |
695 ## - | |
-- | Time measurement |
695 ## - | |
-- | Tin |
695 ## - | |
-- | Transfer functions |
695 ## - | |
-- | Transforms |
695 ## - | |
-- | Transient analysis |
695 ## - | |
-- | Transversal filters |
695 ## - | |
-- | Vectors |
695 ## - | |
-- | Weight measurement |
695 ## - | |
-- | Writing |
710 2# - ADDED ENTRY--CORPORATE NAME | |
Corporate name or jurisdiction name as entry element | John Wiley & Sons |
Relator term | publisher. |
710 2# - ADDED ENTRY--CORPORATE NAME | |
Corporate name or jurisdiction name as entry element | IEEE Xplore (Online service), |
Relator term | distributor. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
International Standard Book Number | 9780470253885 |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Materials specified | Abstract with links to resource |
Uniform Resource Identifier | <a href="https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237520">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237520</a> |
No items available.