Hodge Theory Day/ (Record no. 37572)

MARC details
000 -LEADER
fixed length control field 01829n a2200253#a 4500
001 - CONTROL NUMBER
control field 39018
003 - CONTROL NUMBER IDENTIFIER
control field P5A
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20221213140621.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cuuuuuauuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190523s20192019bl por d
035 ## - SYSTEM CONTROL NUMBER
System control number ocm51338542
040 ## - CATALOGING SOURCE
Original cataloging agency P5A
Transcribing agency P5A
090 ## - IMPA CODE FOR CLASSIFICATION SHELVES
IMPA CODE FOR CLASSIFICATION SHELVES Congressos e Seminários.
111 2# - MAIN ENTRY--MEETING NAME
Meeting name or jurisdiction name as entry element Hodge Theory Day
Date of meeting or treaty signing (2019:
Location of meeting IMPA, Rio de Janeiro, Brazil)
9 (RLIN) 10154
245 10 - TITLE STATEMENT
Title Hodge Theory Day/
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Rio de Janeiro:
Name of publisher, distributor, etc. IMPA,
Date of publication, distribution, etc. 2019.
300 ## - PHYSICAL DESCRIPTION
Extent video online
505 2# - FORMATTED CONTENTS NOTE
Formatted contents note What is now called Hodge theory is a culmination of great amount of efforts starting from the works of Augustin Louis Cauchy (1789-1857), Niels Henrik Abel (1802-1829), Carl Gustav Jacob Jacobi (1804-1851) and Georg Friedrich Bernhard Riemann (1826-1866) on elliptic and abelian integrals, Jules Henri Poincaré’s (1854-1912) Analysis Situs, Charles Émile Picard’s (1856-1941) intensive study of multiple integrals, Solomon Lefschetz’s (1884-1972) treatise on the topology of smooth projective varieties, William Vallance Douglas Hodge’s (1903-1975) description of the de Rham cohomology of projective varieties, Phillip Augustus Griffiths’ (1938-) breakthrough applications of it in algebraic geometry and Pierre René Deligne’s (1944-) vast generalization of it into mixed Hodge structures; just to mention the name of some of the main contributers. The main aim of this one day workshop is to have a glance at this topic and some of its main conjectures.
650 04 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Matematica.
Source of heading or term larpcal
9 (RLIN) 19899
697 ## - LOCAL SUBJECT
Local Subject Congressos e Seminários.
Linkage 23755
856 4# - ELECTRONIC LOCATION AND ACCESS
Public note VIDEOS
Uniform Resource Identifier <a href="http://bit.ly/2Yhvk0m">http://bit.ly/2Yhvk0m</a>
856 4# - ELECTRONIC LOCATION AND ACCESS
Public note EVENTO
Uniform Resource Identifier <a href="https://impa.br/en_US/eventos-do-impa/eventos-2019/hodge-theory-day/">https://impa.br/en_US/eventos-do-impa/eventos-2019/hodge-theory-day/</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books

No items available.

© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha