Hausdorff dimension for projections of dynamically defined complex Cantor sets. (Record no. 37247)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 01972n a2200289#a 4500 |
001 - CONTROL NUMBER | |
control field | 38624 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | P5A |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20221213140615.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cuuuuuauuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 180906s2018 bl por d |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | ocm51338542 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | P5A |
Transcribing agency | P5A |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | cs |
090 ## - IMPA CODE FOR CLASSIFICATION SHELVES | |
IMPA CODE FOR CLASSIFICATION SHELVES | Congressos e Seminários. |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Zamudio Espinosa, Alex Mauricio |
9 (RLIN) | 10312 |
245 10 - TITLE STATEMENT | |
Title | Hausdorff dimension for projections of dynamically defined complex Cantor sets. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | Rio de Janeiro: |
Name of publisher, distributor, etc. | IMPA, |
Date of publication, distribution, etc. | 2018. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | video online |
500 ## - GENERAL NOTE | |
General note | Seminários de Sistemas Dinâmicos. |
505 1# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Resumo: A classical theorem of Marstrand states that for any Borel subset F ?R2 HD(p?(F)) = min{1,HD(F)}, for almost all projection p?(x,y) = x+?y (with respect to Lebesgue measure in ?). Moreira was able to improve this theorem in the particular context of dynamically defined Cantor sets. He proved that given dynamically defined Cantor sets K1,K2 ? R satisfying some generic hypothesis one has HD(K1 +?·K2) =min{1,HD(K1)+HD(K2)}, for all ?= 0. We will talk about how Moreiras ideas can be generalized to Cantor sets in the complex plane, in particular we will have a similar formula which holds for dynamically defined complex Cantor sets. In particular, this Cantor sets include Julia sets associated to quadratic maps Qc(z) = z2 + c when the parameter c is not in the Mandelbrot set. |
650 04 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Matematica. |
Source of heading or term | larpcal |
9 (RLIN) | 19899 |
650 04 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Sistemas dinamicos. |
9 (RLIN) | 13212 |
697 ## - LOCAL SUBJECT | |
Local Subject | Congressos e Seminários. |
Linkage | 23755 |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Moreira, Carlos Gustavo T. de A. |
9 (RLIN) | 12783 |
856 4# - ELECTRONIC LOCATION AND ACCESS | |
Public note | VIDEO |
Uniform Resource Identifier | <a href="https://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2">https://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2</a> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Books |
No items available.