Hausdorff dimension for projections of dynamically defined complex Cantor sets. (Record no. 37247)

MARC details
000 -LEADER
fixed length control field 01972n a2200289#a 4500
001 - CONTROL NUMBER
control field 38624
003 - CONTROL NUMBER IDENTIFIER
control field P5A
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20221213140615.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cuuuuuauuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180906s2018 bl por d
035 ## - SYSTEM CONTROL NUMBER
System control number ocm51338542
040 ## - CATALOGING SOURCE
Original cataloging agency P5A
Transcribing agency P5A
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number cs
090 ## - IMPA CODE FOR CLASSIFICATION SHELVES
IMPA CODE FOR CLASSIFICATION SHELVES Congressos e Seminários.
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Zamudio Espinosa, Alex Mauricio
9 (RLIN) 10312
245 10 - TITLE STATEMENT
Title Hausdorff dimension for projections of dynamically defined complex Cantor sets.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Rio de Janeiro:
Name of publisher, distributor, etc. IMPA,
Date of publication, distribution, etc. 2018.
300 ## - PHYSICAL DESCRIPTION
Extent video online
500 ## - GENERAL NOTE
General note Seminários de Sistemas Dinâmicos.
505 1# - FORMATTED CONTENTS NOTE
Formatted contents note Resumo: A classical theorem of Marstrand states that for any Borel subset F ?R2 HD(p?(F)) = min{1,HD(F)}, for almost all projection p?(x,y) = x+?y (with respect to Lebesgue measure in ?). Moreira was able to improve this theorem in the particular context of dynamically defined Cantor sets. He proved that given dynamically defined Cantor sets K1,K2 ? R satisfying some generic hypothesis one has HD(K1 +?·K2) =min{1,HD(K1)+HD(K2)}, for all ?= 0. We will talk about how Moreiras ideas can be generalized to Cantor sets in the complex plane, in particular we will have a similar formula which holds for dynamically defined complex Cantor sets. In particular, this Cantor sets include Julia sets associated to quadratic maps Qc(z) = z2 + c when the parameter c is not in the Mandelbrot set.
650 04 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Matematica.
Source of heading or term larpcal
9 (RLIN) 19899
650 04 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Sistemas dinamicos.
9 (RLIN) 13212
697 ## - LOCAL SUBJECT
Local Subject Congressos e Seminários.
Linkage 23755
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Moreira, Carlos Gustavo T. de A.
9 (RLIN) 12783
856 4# - ELECTRONIC LOCATION AND ACCESS
Public note VIDEO
Uniform Resource Identifier <a href="https://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2">https://www.youtube.com/watch?v=NAJnCci5NpY&list=PLo4jXE-LdDTQtj15bpgTQ_LK7x1n5FDrw&t=2s&index=2</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books

No items available.

© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha